Benzoquinones and Related Compounds. Part 6. ${ }^{1}$ Addition of Benzenesulfinic Acid to Substituted 1,4-Quinones

J. Malcolm Bruce* and Paul Lloyd-Williams
Department of Chemistry, The University, Manchester M13 9PL, UK

Abstract

Benzenesulfinic acid adds to 1,4-quinones in the presence of trifluoroacetic acid affording phenylsulfonylhydroquinones. Addition occurs predominantly at the 6-position for methyl-, tert-butyl- and trifluoromethyl-1,4-benzoquinone, but at the 5 -position for methoxy-1,4-benzoquinone. Addition to acyl-1,4-benzoquinones occurs exclusively at the 3 -position, but under similar conditions phenylsulfonyl-1,4-benzoquinone affords a mixture of 2,3- and 2,6-bisphenylsulfonylhydroquinones, although the former becomes the sole product in the presence of an excess of trifluoroacetic acid. These results are rationalised in terms of selective protonation of the quinone.

Oxidation of the phenylsulfonylhydroquinones yields the corresponding quinones which with 1,3dienes give the expected Diels-Alder adducts.

The addition of benzenesulfinic acid to 1,4 -benzoquinone to yield phenylsulfonylhydroquinone is one of the earliest reported instances of the addition of a sulfur nucleophile to a quinone. ${ }^{2}$ We now report on new aspects of reactions involving the addition of benzenesulfinic acid to quinones and of reactions of the quinones derived from the products.
Additions of phenylsulfina'e to the quinones were effected using a two-phase dichloronethane-water system with the organic phase containing sufficient trifluoroacetic acid to ensure acidity throughout the course of the reaction. The results are summarised in Table 1.
1,4-Benzoquinone and its di- and tri-methyl homologues, and 1,4 -naphthoquinone and 1,4 -anthraquinone afforded single, effectively Michael, addition products in good yield (Table 1, entries 1-7).

1

2

3

For toluquinone (2-methyl-1,4-benzoquinone), addition occurs at both the 6 - and 5 -positions, with the former predominating by $3: 1$ (Table 1 , entry 9). Since nucleophilic attack on the free quinone would be expected to occur mainly at the 5position, ${ }^{3}$ this result can be rationalised by invoking attack of the sulfinic acid on the protonated quinone; ${ }^{4}$ for steric reasons protonation would be expected to occur predominantly at the 4-carbonyl group [4 $(\mathrm{R}=\mathrm{Me})$]. A similar argument can be

applied to tert-butyl-1,4-benzoquinone, for which the increased (12:1) proportion of 6 -substituted product (Table 1, entry 10) arises from steric retardation of competing protonation of the 1 -carbonyl group [cf. $\left.\mathbf{4}\left(\mathrm{R}=\mathrm{Bu}^{t}\right)\right]$. The ratio $(4: 1)$ of products from trifluoromethyl-1,4-benzoquinone (Table 1, entry 11)
parallels that from toluquinone, implying a similar distribution of protonated forms, and an essentially steric effect for the inductively electron-accepting trifluoromethyl group.

For methoxy-1,4-benzoquinone, the regioselectivity of addition is reversed, with attack occurring predominantly (9:1) at the 5 -position (Table 1, entry 12). The methoxy and 4 -carbonyl groups here constitute a vinylogous ester, in effect leaving the remaining enone moiety 5 to control the regiochemistry of the Michael addition, an effect which will be enhanced by the preferential protonation of the 1 -carbonyl group consequent upon the presence of the adjacent methoxy group 6 as observed for some Lewis acid catalysed Diels-Alder reactions

of methoxy-1,4-benzoquinones. ${ }^{5,6}$ That addition does not occur exclusively at the 5 -position may be a consequence of the competing protonation of the 4 -carbonyl group 4 ($\mathrm{R}=$ OMe) leading to activation of the 6 -position.

The four acyl-1,4-benzoquinones $1\left(\mathrm{R}^{1}=\mathrm{COMe}, \mathrm{COPh}\right.$, COBu^{t} or $\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) add benzenesulfinic acid regiospecifically (Table 1 , entries 13-16) giving the corresponding 2-acyl-3-phenylsulfonylhydroquinones $7(\mathrm{R}=\mathrm{Me}$, $\mathrm{Ph}, \mathrm{Bu}^{t}$ or OMe , respectively), in agreement with well-precedented ${ }^{7,8}$ susceptibility of acyl-1,4-benzoquinones to undergo nucleophilic addition at the 3 -position, control being dominated by the additional stabilisation of the intermediate due to the acyl group. However, under the conditions employed for the

present work, protonation of the quinone may be the dominating factor. It would be expected to occur predominantly at the 1-carbonyl group because this can lead to internally hydrogen-

Table 1 Hydroquinones from addition of benzenesulfinic acid to 1,4-quinones (quinone: $\mathrm{PhSO}_{2} \mathrm{Na}^{2} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}=1.0: 1.1: 1.1$)

Entry	Quinone				Hydroquinone 2			
		R^{1}	R^{2}	R^{3}	R^{1}	\mathbf{R}^{2}	R^{3}	Yield (\%) ${ }^{\text {a }}$
1	1	H	H	H	H	H	H	95
2	1	H	Me	Me	H	Me	Me	78
3	1	Me	Me	H	H	Me	Me	84
4	1	Me	H	Me	Me	H	Me	79
5	1	Me	Me	Me	Me	Me	Me	82
6	1	H			H		68	
7	1	H			H			57
8	1	Me	$\langle 1\rangle$		Me	\rangle		0
9	1	H	Me	H	H	Me	H	$25^{\text {b }}$
					H	H	Me	$75^{\text {b }}$
10	1	H	$B u^{\text {t }}$	H	H	$\mathrm{Bu}^{\text {t }}$	$\mathrm{H}^{\text {H }}$	$7^{7}{ }^{\text {b }}$
					H	H	Bu^{\prime}	$93{ }^{\text {b }}$
11	1	H	CF_{3}	H	H	CF_{3}	H	$20^{\text {b }}$
					H	${ }^{\text {H }}$	CF_{3}	$80^{\text {b }}$
12	1	OMe	H	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{OMe} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{OMe} \end{aligned}$	$\begin{aligned} & 80^{b} \\ & 20^{b} \end{aligned}$
13	1	MeCO	H	H	MeCO	H	H	68
14	1	PhCO	H	H	PhCO	H	H	85
15	1	$\mathrm{Bu}^{\text {c }} \mathrm{CO}$	H	H	$\mathrm{Bu}^{\prime} \mathrm{CO}$	H	H	66
16	1	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	84
17	3	H	H	H	PhSO_{2}	H	H	46^{c}
					$\mathrm{H}^{\text {P }}$	H	PhSO_{2}	48
18	3	H	Me	Me	PhSO_{2}	Me	Me	67
19	3	Me	Me	H	Me	Me	PhSO_{2}	85
20	3	Me	H	Me	Me	PhSO_{2}	Me	92

${ }^{a}$ Yield of product isolated. ${ }^{b}$ Calculated from the ratio of isomers in the total reaction product determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ This isomer was formed exclusively, in 67% isolated yield, when the ratio of reactants was $1.0: 1.1: 3.8$.
bonded quasi-aromatic systems such as 8 , and thus lead to exclusive addition of the nucleophile to the 3 -position.

For phenylsulfonyl-1,4-benzoquinone $3\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\right.$ H) the regiochemistry of addition is controlled by the amount of trifluoroacetic acid present (Table 1, entry 17). With 1.1 mol of acid, addition is divided almost equally between the 3 - and 6 -positions. On electronic grounds, attack at the 3-position would be expected to predominate, giving the intermediate 9 from which the product $2\left(\mathrm{R}^{1}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)$ is formed by enolisation. However this enolisation places two bulky substituents ortho to each other, and may be sufficiently slow to permit reversal ${ }^{9,10}$ at the intermediate, 9, stage, regenerating the starting materials and therefore allowing the alternative mode of addition, involving protonation at the 4carbonyl group, to compete, thus affording the 2,6 -bisphenylsulfonylhydroquinone $2\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{SO}_{2} \mathrm{Ph}\right)$. With 3.8 mol of trifluoroacetic acid, 2,3-bisphenylsulfonylhydroquinone was formed exclusively suggesting either (or both) enhanced protonation of the 1 -carbonyl group of the quinone or catalysis of enolisation of the intermediate ketonic adduct 9 .

No such complications arise for the three isomeric dimethyl homologues of phenylsulfonyl-1,4-benzoquinone, each of which yields the corresponding bisphenylsulfonylhydroquinone (Table 1 , entries $18-20$).

2-Methyl-1,4-naphthoquinone failed to yield a phenylsulfonylhydroquinone. Elimination from an initial adduct such as 10
may be favoured over enolisation, since keto-enol tautomerism is much more facile ${ }^{11}$ in 1,4 -dihydroxynaphthalene than it is in 1,4-dihydroxybenzene, and the keto form is expected to be favoured by the reduction in steric repulsion between the 2 - and 3 -substituents, ${ }^{12,13}$ although at $200^{\circ} \mathrm{C}$ 2,3-dimethyl-1,4-naphthohydroquinone is favoured over its ketonic tautomer, ${ }^{14}$ this effect is absent in the adduct from 1,4-naphthoquinone (Table 1, entry 6).

The hydroquinones corresponding to entries 1-6 in Table 1 were readily oxidised to the quinones by treatment with silver(I) oxide; oxidation of the bisphenylsulfonylhydroquinones (Table 1 , entries 17-20) required phenyliodine(iII) bistrifluoroacetate. Treatment of 2-phenylsulfonyl-1,4-anthrahydroquinone (Table 1, entry 7) with silver(1) oxide did not proceed cleanly, and afforded some 1,4-anthraquinone, possibly via base-induced elimination of phenylsulfinate from the diketonic tautomer ($c f$. ref. 15).

Addition of cyclopentadiene, 1,3-butadiene and (E)-penta-1,3diene to phenylsulfonyl-1,4-benzoquinone afforded the expected Diels-Alder endo-adducts $11(\mathrm{R}=\mathrm{H})$ and $12(\mathrm{R}=\mathrm{H}$ or Me$)$, respectively, ${ }^{*}$ that with (E)-penta-1,3-diene being formed regiospecifically (${ }^{1} \mathrm{H}$ NMR spectrum of total product) in accord with the electron accepting nature of the phenylsulfonyl group. ${ }^{16}$

[^0]Table 2 First ($E_{\frac{1}{1}}^{1}, \mathrm{Q} / \mathrm{Q}^{--}$) and second ($E_{\frac{1}{2}}^{2}, \mathrm{Q}^{--} / \mathrm{Q}^{2-}$) half-wave reduction potentials of quinones in dimethylformamide vs. saturated calomel electrode

Entry	Quinone				E_{1}^{1} / mV	E_{1}^{2} / mV
		R ${ }^{1}$	R^{2}	R^{3}		
1	1	H	H	H	-401	-1155
2	3	H	H	H	-40	-
3	1	H	Me	Me	-543	-1269
4	3	H	Me	Me	- 147	-1026
5	1	Me	Me	Me	-632	-1393
6	3	Me	Me	Me	-318	-1037
7	1	MeCO	H	H	-178	-
8	3	MeCO	H	H	+50	-744
9	1	PhCO	H	H	-211	-1048
10	3	PhCO	H	H	$+58$	-727
11	1	$\mathrm{Bu}^{t} \mathrm{CO}$	H	H	-286	-1116
12	3	$\mathrm{Bu}^{t} \mathrm{CO}$	H	H	+41	-752
13	1	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	-196	-1044
14	3	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	+100	-747
15	3	H	H	PhSO_{2}	+248	-
16	1	Me	H	Me	-551	-1299
17	3	Me	PhSO_{2}	Me	+4	-
18	1	Me	Me	H	-547	-1257
19	3	Me	Me	PhSO_{2}	-17	-802
20	1	H			-581	-1310
21	3	H	/		-167	-940

12
Addition of cyclopentadiene to 2,3-bisphenylsulfonyl-1,4benzoquinone appeared to be governed by steric factors, and afforded the adduct 13 exclusively,* thus establishing the relative orientation of the phenylsulfonyl groups in the original hydroquinone. 2,6-Bisphenylsulfonyl-1,4-benzoquinone afforded the adduct $11\left(\mathrm{R}=\mathrm{SO}_{2} \mathrm{Ph}\right),{ }^{*}$ the orientation of the substituents in the quinone having already been confirmed by the presence of two distinct carbonyl carbon resonances in its ${ }^{13} \mathrm{C}$ NMR spectrum.
Treatment of the buta-1,3-diene adduct $12(\mathrm{R}=\mathrm{H})$ with pyridine at room temperature afforded the isomer $14\left(R^{1}=\right.$ $\mathrm{R}^{2}=\mathrm{H}$) rapidly and in high yield, probably via an eliminationaddition mechanism, ${ }^{17}$ since the corresponding reaction with the penta-1,3-diene adduct $\mathbf{1 2}(\mathrm{R}=\mathrm{Me})$ afforded an almost 1:1 mixture of the isomeric rearrangement products $14\left(R^{1}=\mathrm{Me}\right.$, $\left.\mathrm{R}^{2}=\mathrm{H}\right)$ and $14\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$.*

The results of cyclic voltammetry for phenylsulfonylquinones 3 are presented in Table 2, together with data for their precursor quinones 1.
The first half-wave reduction potential of phenylsulfonyl-1,4-

[^1]benzoquinone (entry 2) is 361 mV higher than that of $1,4-$ benzoquinone (entry 1), whilst that of 2,3 -dimethyl-5-phenyl-sulfonyl-1,4-benzoquinone (entry 4) and 2-phenylsulfonyl-1,4naphthoquinone (entry 21) are 396 and 414 mV higher than those of their parents (entries 3 and 20 respectively). The increment is lowered, but only to 314 mV , by the presence of a methyl group at the 3 -position (entries 6 and 5) suggesting that the inductive effect of the phenylsulfonyl group is dominant in stabilising the semiquinone. The effects of acetyl, benzoyl, pivaloyl and methoxycarbonyl substituents at the 3-position are similar, with increments due to the phenylsulfonyl group ranging from 228 to 322 mV (entries 8,$7 ; 10,9 ; 12,11 ; 14,13$ respectively).

The first half-wave reduction potential of 2,6-bisphenyl-sulfonyl-1,4-benzoquinone (entry 15) is 649 mV above that of 1,4-benzoquinone (entry 1), and 288 mV above that of phenylsulfonyl-1,4-benzoquinone (entry 2), effects which in each case are $c a .70 \mathrm{mV}$ less than additive. The presence of methyl groups at both the 3 - and 5 -positions (entry 19) of the bisphenylsulfonylquinone reduces the increment over the parent (entry 18) to 564 mV , in line with the effect of an adjacent methyl group in the monophenylsulfonyl series (entries $6,5 \mathrm{vs}$. 2, 1); the situation with 3,6-dimethyl-2,5-bisphenylsulfonyl-1,4benzoquinone (entries 17,16) is similar. 2,3-Bisphenylsulfonyl1,4 -benzoquinone did not give a satisfactory voltammagram.

The second half-wave reduction potential follows a similar pattern, although some of the quinones (entries 2,7,15,17) failed to give meaningful waves.

The phenylsulfonyl group thus stabilises the semiquinone $\left(\mathrm{Q}^{--}\right)$to an extent which is only slightly less than that of a cyano group (cyano-1,4-benzoquinone has $E_{\frac{1}{2}}^{1}+10 \mathrm{mV}$ in dimethylformamide ${ }^{22}$), and the first half-wave reduction potential of phenylsulfonyl-1,4-benzoquinone (-40 mV) is very similar to that of 2,5-bismethoxycarbonyl-1,4-benzoquinone (-32 mV in dimethylformamide ${ }^{22}$). The phenylsulfonylquinones therefore complement the already extensive range of quinones having potentially useful redox properties.

Experimental

Organic solutions were dried over sodium sulfate. Reactions involving quinones were carried out with the exclusion of light from the reaction vessel. Products were crystallized from toluene unless otherwise stated. J values are given in Hz .

General Procedure for the Preparation of Phenylsulfonyl-hydroquinones.-Phenylsulfonylhydroquinone. A solution of 1,4benzoquinone ($5.02 \mathrm{~g}, 46.48 \mathrm{mmol}$) and trifluoroacetic acid (3.5 $\mathrm{cm}^{3}, 47.13 \mathrm{mmol}$) in dichloromethane ($65 \mathrm{~cm}^{3}$) was shaken at room temperature with a solution of sodium benzenesulfinate $(7.94 \mathrm{~g}, 48.41 \mathrm{mmol})$ in water $\left(45 \mathrm{~cm}^{3}\right)$ for 4 h : the quinone solution was decolourised. The precipitate was collected by filtration, washed with water and dried under reduced pressure. The layers of the two-phase filtrate were separated and the organic layer was dried. Solvent removal gave a creamy-white solid. Recrystallisation from toluene gave the hydroquinone as white needles ($11.05 \mathrm{~g}, 95 \%$), m.p. $199-200^{\circ} \mathrm{C}$ (lit., ${ }^{2} 196^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3255 \mathrm{br}, 1505 \mathrm{~m}, 1370 \mathrm{~s}, 1295 \mathrm{~s}, 1225 \mathrm{~m}, 1145 \mathrm{~s}$ and $1090 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.52$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 1-$ and $\left.4-\mathrm{OH}\right), 8.04\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.65\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.37(\mathrm{~d}, J 2.5,3-\mathrm{H}), 7.09\left(\mathrm{dd}, J_{1} 9, J_{2} 2.5,5-\mathrm{H}\right)$ and $6.85(\mathrm{~d}, J 9,6-\mathrm{H}) ; m / z 250\left(\mathrm{M}^{+}, 100 \%\right)$.

2,3-Dimethyl-5-phenylsulfonylhydroquinone. Needles (78\%), m.p. $197-198^{\circ} \mathrm{C}$ (lit., ${ }^{19} 196-198^{\circ} \mathrm{C}$); $v_{\max }$ (Nujol)/ $/ \mathrm{cm}^{-1} 1680 \mathrm{w}$, $1310 \mathrm{~m}, 1295 \mathrm{~m}$ and $1270 \mathrm{~s} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.77(\mathrm{~s}$, removed by $\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}$), 8.20 (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}$), $7.96\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.65\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.09(\mathrm{~s}$, $6-\mathrm{H}$) and 2.14 ($\mathrm{s}, 2-\mathrm{Me}$ and $3-\mathrm{Me}$); $m / z 278\left(\mathrm{M}^{+}, 27 \%\right), 77$ (96) and 51 (100).

2,5-Dimethyl-3-phenylsulfonylhydroquinone. Needles (79\%), m.p. $\quad 154-154.5^{\circ} \mathrm{C} \quad$ (lit., ${ }^{19} \quad 160-160.5^{\circ} \mathrm{C}$); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1}$ $1710 \mathrm{w}, 1600 \mathrm{w}, 1570 \mathrm{~s}$ and $1370 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 10.26$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}$), 8.15-7.33 (m, $2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$, $5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$ and $1-\mathrm{OH}$), $7.03(\mathrm{~s}, 6-\mathrm{H})$ and 2.17 (s, 2-Me and $\left.5-\mathrm{Me}\right)$; $m / z 278\left(\mathrm{M}^{+}, 93 \%\right)$ and $77(100)$.

2,6-Dimethyl-3-phenylsulfonylhydroquinone. Needles (84%), m.p. $\quad 147-148.5^{\circ} \mathrm{C} \quad$ (lit., ${ }^{19} \quad 147.5-149{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $3580 \mathrm{sh}, 1470 \mathrm{~s}, 1365 \mathrm{~m}, 1365 \mathrm{~m}, 1235 \mathrm{~s}$ and $1205 \mathrm{~s} ; \delta_{\mathrm{H}}[60 \mathrm{MHz}$; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} 9.92$ (br s, removed by $\left.\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}\right), 8.12-7.43$ (m, $2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$ and $1-\mathrm{OH}$), $6.74(\mathrm{~s}, 5-\mathrm{H})$ and 2.23 (s , 2-Me and 6-Me); $m / z 278\left(\mathrm{M}^{+}, 70 \%\right)$ and 77 (100).

2,3,5-Trimethyl-6-phenylsulfonylhydroquinone. Needles, $\left(82 \%\right.$), m.p. 148-149 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{19} 148-149{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $3260 \mathrm{br}, 1445 \mathrm{~m}, 1410 \mathrm{~m}$ and 1200 s ; $\delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ 8.17-7.76 (m, 2'- H, $6^{\prime}-\mathrm{H}$ and $\left.1-\mathrm{OH}\right), 7.76-7.29\left(3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and 4-OH), 2.25 (s, 5-Me) and 2.19 (s, 2-Me and 3-Me); $m / z 292$ ($\mathrm{M}^{+}, 52 \%$) and 40 (100).

2-Phenylsulfonylnaphthalene-1,4-diol. Needles (68\%), m.p. $178-179.5^{\circ} \mathrm{C}$ (lit. ${ }^{15} 178^{\circ} \mathrm{C}$); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3415 \mathrm{sh}, 1450 \mathrm{~s}$, 1310 m and $1270 \mathrm{~s} ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 9.92$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{H}$), 8.47 (d, $\left.J 7.5,8-\mathrm{H}\right), 8.33$ (d, $\left.J .5,5-\mathrm{H}\right), 8.16\left(\mathrm{~m}, 2^{\prime}-\right.$ H and $\left.6^{\prime}-\mathrm{H}\right), 7.92-7.70\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right.$ and $\left.7-\mathrm{H}\right)$ and 7.09 (s, 3-H); m/z 300 ($\mathrm{M}^{+}, 100 \%$).

2-Phenylsulfonylanthracene-1,4-diol. From 1,4-anthraquinone ($0.81 \mathrm{~g}, 3.87 \mathrm{mmol}$), trifluoroacetic acid ($1 \mathrm{~cm}^{3}, 13.46 \mathrm{mmol}$) in dichloromethane ($30 \mathrm{~cm}^{3}$) and sodium benzenesulfinate (1.99 g , 12.18 mmol) in water ($40 \mathrm{~cm}^{3}$). The title compound formed pale-yellow needles ($0.77 \mathrm{~g}, 57 \%$), m.p. 203-204 ${ }^{\circ} \mathrm{C}$ (Found: C, $68.6 ; \mathrm{H}, 4.1 ; \mathrm{S}, 9.0 . \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ requires: C, $68.6 ; \mathrm{H}, 4.0 ; \mathrm{S}, 9.1 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3670 \mathrm{sh}, 1690 \mathrm{~m}, 1525 \mathrm{~m}$, and $1200 \mathrm{~s} ; \delta_{\mathrm{H}}[90$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 10.33$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 1$ - and $4-\mathrm{OH}$), $8.95(\mathrm{~s}, 9-\mathrm{H}), 8.81(\mathrm{~s}, 10-\mathrm{H}), 8.40-7.95\left(\mathrm{~m}, 5-\mathrm{H}, 8-\mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.85-7.45\left(\mathrm{~m}, 7-\mathrm{H}, 6-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $7.13(\mathrm{~s}$, $3-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}, 15 \%\right)$ and $208\left[\left(\mathrm{M}-\mathrm{HSO}_{2} \mathrm{Ph}\right)^{+}, 100\right]$.

Reaction Between Benzenesulfinic Acid and Methyl-1,4-ben-zoquinone.-Methyl-1,4-benzoquinone ($0.56 \mathrm{~g}, 4.61 \mathrm{mmol}$), tri-
fluoroacetic acid ($0.39 \mathrm{~cm}^{3}, 5.16 \mathrm{mmol}$) in dichloromethane (10 cm^{3}) and sodium benzenesulfinate ($0.85 \mathrm{~g}, 5.16 \mathrm{mmol}$) in water ($10 \mathrm{~cm}^{3}$) afforded a white solid (1.15 g). PLC ($4: 1$, PhMeMeOH ; silica) of this solid (11 mg) gave (a) 2-methyl-6phenylsulfonylhydroquinone (5 mg) $R_{\mathrm{f}} 0.54$), m.p. $183-186^{\circ} \mathrm{C}$ (lit., ${ }^{19} 189-191{ }^{\circ} \mathrm{C}$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3580 \mathrm{~b}, 3050 \mathrm{w}, 1275 \mathrm{~m}$, 1255 s and $1200 \mathrm{~s} ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.88$ (s, removed by $\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}$), 8.48 (s, removed by $\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}$), 8.16 ($\mathrm{m}, 2^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.14\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.20(\mathrm{~d}, J 3,5-\mathrm{H}), 7.10$ (d, $J 3,3-\mathrm{H}$) and 2.27 (s, Me); $m / z 264\left(\mathrm{M}^{+}, 100 \%\right)$; and (b) $2-$ methyl-5-phenylsulfonylhydroquinone (contaminated with a small amount of 2-methyl-6-phenylsulfonylhydroquinone) (4.2 mg) ($R_{\mathrm{f}} 0.38$), m.p. $158-164{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3580 \mathrm{br}$, 3050 m and $1275 \mathrm{~m} ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.85$ (s, removed by $\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}$), 8.44 (s , removed by $\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}$), $8.14\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.79\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.41(\mathrm{~s}, 6-\mathrm{H}), 6.89$ (s, 3-H) and 2.27 (s, Me) (together with lines due to the 5-phenylsulfonyl isomer); $m / z 264$ ($\mathrm{M}^{+}, 100 \%$).

Reaction Between Benzenesulfinic Acid and tert-Butyl-1,4-benzoquinone.-tert-Butyl-1,4-benzoquinone $(0.12 \mathrm{~g}, 0.72$ mmol), trifluoroacetic acid ($0.067 \mathrm{~cm}^{3}, 0.90 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) and sodium benzenesulfinate (0.15 g , 0.90 mmol) in water ($5 \mathrm{~cm}^{3}$) gave 2-tert-butyl-6-phenylsulfonylhydroquinone ($0.15 \mathrm{~g}, 76 \%$) as white plates m.p. $147.5-149{ }^{\circ} \mathrm{C}$ (Found: C, 62.25; H, 5.9; S, 10.4. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 62.75$; $\mathrm{H}, 5.9 ; \mathrm{S}, 10.5 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3320 \mathrm{br}, 1445 \mathrm{~m}, 1430 \mathrm{~m}$, 1295 m and $1250 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 9.26$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}$), $7.96\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}^{\prime}\right.$ and $\left.4-\mathrm{OH}\right), 7.60\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}\right.$, $4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.17(\mathrm{~d}, J 3,5-\mathrm{H}), 7.07(\mathrm{~d}, J 3,3-\mathrm{H})$ and $1.34(\mathrm{~s}$, $\left.\mathrm{Bu}^{1}\right) ; m / z\left(\mathrm{M}^{+}, 67 \%\right)$ and $291\left[(\mathrm{M}-\mathrm{Me})^{+}, 100 \%\right.$]. The material recovered by removal of the solvent from the mother liquor had spectroscopic data consistent with it being a mixture of 2-tert-butyl-6-phenylsulfonylhydroquinone and 2-tert-butyl5 -phenylsulfonylhydroquinone; the latter was not isolated.

Reaction Between Benzenesulfinic Acid and Trifluoromethyl-1,4-benzoquinone.-Trifluoromethyl-1,4-benzoquinone (0.20 g , $1.16 \mathrm{mmol})$, trifluoroacetic acid ($0.09 \mathrm{~cm}^{3}, 1.34 \mathrm{mmol}$) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate $(0.21 \mathrm{~g}$, 1.26 mmol) in water $\left(5 \mathrm{~cm}^{3}\right)$ afforded a white solid (0.31 g). PLC (4:1, PhMe-MeOH; silica) of this (10 mg) gave (a) 6-phenyl-sulfonyl-2-trifluoromethylhydroquinone $(3.8 \mathrm{mg})\left(R_{\mathrm{f}} 0.58\right)$, m.p. 138-139.5 ${ }^{\circ} \mathrm{C}$ (Found: M^{+}, 318.0180. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires M, 318.0174); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3540 \mathrm{br}, 1470 \mathrm{~m}$ and 1325 m ; $\delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 9.34-9.00$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 1$ $\mathrm{OH}), 8.23\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.87\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $5^{\prime}-\mathrm{H}$ and $1-\mathrm{OH}), 7.64(\mathrm{~d}, J 3,5-\mathrm{H})$ and $7.49(\mathrm{~d}, J 3,3-\mathrm{H}) ; m / z 318\left(\mathrm{M}^{+}\right.$, 100%); (b) 5-phenylsulfonyl-2-trifluoromethylhydroquinone (1.7 $\mathrm{mg})\left(R_{\mathrm{f}} 0.32\right.$), m.p. $164-166^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 318.0180$. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4}$ S requires $M, 318.0174$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300 \mathrm{br}$, 1450 m and $1310 \mathrm{~m} ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 9.45$ (br s, removed by $\left.\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}\right), 8.20\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.82\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\right.$ H and $1-\mathrm{OH}), 7.84(\mathrm{~s}, 6-\mathrm{H})$ and $7.32(\mathrm{~s}, 3-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 318\left(\mathrm{M}^{+}\right.$, 100%).

Reaction Between Benzenesulfinic Acid and Methoxy-1,4-benzoquinone.-Methoxy-1,4-benzoquinone ($0.21 \mathrm{~g}, 1.49 \mathrm{mmol}$), trifluoroacetic acid ($0.137 \mathrm{~cm}^{3}, 1.84 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) and sodium benzenesulfinate ($0.29 \mathrm{~g}, 1.77 \mathrm{mmol}$) in water ($5 \mathrm{~cm}^{3}$) afforded a white solid (0.38 g). PLC ($4: 1, \mathrm{PhMe}$ MeOH ; silica) of this (11 mg) gave (a) 2-methoxy-5-phenylsulfonylhydroquinone (9 mg) ($R_{\mathrm{f}} 0.55$) m.p. $160-161.5^{\circ} \mathrm{C}$ (Found: M^{+}, 280.0411. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$ requires M, 280.0405); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3340 \mathrm{br}, 1630 \mathrm{~m}, 1495 \mathrm{~s}, 1440 \mathrm{~m}, 1380 \mathrm{~m}$ and $1235 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 9.11$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}$, $4-\mathrm{OH}), 8.82\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 8.18\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and 1^{-} $\mathrm{OH}), 7.35(\mathrm{~s}, 6-\mathrm{H}), 6.70(\mathrm{~s}, 3-\mathrm{H})$ and $3.99(\mathrm{~s}, \mathrm{Me}) ; \mathrm{m} / \mathrm{z} 280\left(\mathrm{M}^{+}\right.$,
100%; (b) 2-methoxy-6-phenylsulfonylhydroquinone contaminated with a small amount of 2-methoxy-5-phenylsulfonylhydroquinone (1 mg) ($R_{\mathrm{f}} 0.16$), m.p. 211-214 ${ }^{\circ} \mathrm{C}$ (Found: \mathbf{M}^{+}, 280.0403. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 280.0405$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ / $\mathrm{cm}^{-1} 3400 \mathrm{br}, 1600 \mathrm{~m}$ and $1200 \mathrm{~s} ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.61$ (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}$), 8.28 (br s, removed by $\mathrm{D}_{2} \mathrm{O}, 4-$ $\mathrm{OH}), 8.23\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.84\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, $7.23(\mathrm{~d}, J 3,5-\mathrm{H}), 6.96(\mathrm{~d}, J 3,3-\mathrm{H})$ and $4.00(\mathrm{~s}, \mathrm{Me})$ together with lines due to the other isomer; $m / z 280\left(\mathrm{M}^{+}, 51 \%\right)$ and 83 (100).

2-Acetyl-3-phenylsulfonylhydroquinone.-Acetyl-1,4-benzoquinone $(0.61 \mathrm{~g}, 4.10 \mathrm{mmol})$, trifluoroacetic acid $\left(0.383 \mathrm{~cm}^{3}, 5.16\right.$ $\mathrm{mmol})$ in dichloromethane ($10 \mathrm{~cm}^{3}$) and sodium benzenesulfinate ($0.85 \mathrm{~g}, 5.15 \mathrm{mmol}$) in water $\left(10 \mathrm{~cm}^{3}\right)$ gave 2-acetyl-3phenylsulfonylhydroquinone $(1.22 \mathrm{~g}, 68 \%$) as white prisms, m.p. $182-183{ }^{\circ} \mathrm{C}$ (Found: C, 57.3; H, 4.2; S, 10.9. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}$ requires: $\mathrm{C}, 57.5 ; \mathrm{H}, 4.1 \mathrm{~S}, 11.0 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3370 \mathrm{br}$, $1680 \mathrm{~s}, 1445 \mathrm{~s}, 1375 \mathrm{~m}$ and $1300 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.13$ $7.81\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.70-7.31\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 1-\mathrm{OH}\right.$ and $4-\mathrm{OH}), 6.96(\mathrm{~d}, J 9.3,6-\mathrm{H}$ or $5-\mathrm{H}), 6.76(\mathrm{~d}, J 9.3,5-\mathrm{H}$ or $6-\mathrm{H})$ and $2.52(\mathrm{~s}, \mathrm{Me}) ; m / z 292\left(\mathrm{M}^{+}, 41 \%\right)$ and 43 (100).

2-Benzoyl-3-phenylsulfonylhydroquinone.-Benzoyl-1,4benzoquinone ($0.57 \mathrm{~g}, 2.70 \mathrm{mmol}$), trifluoroacetic acid (0.245 $\left.\mathrm{cm}^{3}, 3.30 \mathrm{mmol}\right)$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate $(0.54 \mathrm{~g}, 3.31 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ gave the hydroquinone as white prisms $(0.82 \mathrm{~g}, 85 \%)$, m.p. $207-210^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 65.7 ; \mathrm{H}, 3.9 ; \mathrm{S}, 8.8 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$ requires: $\mathrm{C}, 64.4 ; \mathrm{H}$, $3.95 ; \mathrm{S}, 9.0 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3140 \mathrm{br}, 1660 \mathrm{~s}, 1600 \mathrm{~m}, 1375 \mathrm{~m}$, $1585 \mathrm{~m}, 1450 \mathrm{~m}, 1320 \mathrm{~s}$ and $1300 \mathrm{~s} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.73-$ 7.33 (m, 2'-H, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-$ $\mathrm{H}, 1-\mathrm{OH}$ and $4-\mathrm{OH}), 7.20(\mathrm{~d}, J 9.3,6-\mathrm{H}$ or $5-\mathrm{H})$ and $6.96(\mathrm{~d}, J$ $9.3,5-\mathrm{H}$ or $6-\mathrm{H}) ; m / z 354\left(\mathrm{M}^{+}, 56 \%\right)$ and $77(100)$.

Pivaloyl-1,4-benzoquinone.-Ammonium cerium(Iv) nitrate $(5.60 \mathrm{~g}, 10.22 \mathrm{mmol})$ in water $\left(60 \mathrm{~cm}^{3}\right)$ was added over 20 min to a stirred solution of pivaloylhydroquinone dimethyl ether $(0.63$ $\mathrm{g}, 2.84 \mathrm{mmol}$) in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$. This solution was stirred for 12 h at room temperature. After extraction with dichloromethane ($3 \times 25 \mathrm{~cm}^{3}$), washing of the combined extracts with water ($3 \times 50 \mathrm{~cm}^{3}$), drying and solvent removal, crystallisation from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) gave pivaloyl-1,4-benzoquinone ($0.32 \mathrm{~g}, 57 \%$), as orange-yellow needles, m.p. $74-75^{\circ} \mathrm{C}$ (lit., ${ }^{20} 75-75.5^{\circ} \mathrm{C}$).

3-Phenylsulfonyl-2-pivaloylhydroquinone.-From pivaloyl-1,4-benzoquinone $(0.29 \mathrm{~g}, 1.53 \mathrm{mmol})$, trifluoroacetic acid ($0.133 \mathrm{~cm}^{3}, 1.78 \mathrm{mmol}$) in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate $(0.29 \mathrm{~g}, 1.78 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$. Recrystallisation from cyclohexane gave the hydroquinone as white needles $\left(0.34 \mathrm{~g}, 66^{\circ}\right.$) , m.p. $101.5-104{ }^{\circ} \mathrm{C}$ (Found: C, 61.2; $\mathrm{H}, 5.5 ; \mathrm{S}, 9.3 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$ requires: $\mathrm{C}, 61.1 ; \mathrm{H}, 5.4, \mathrm{~S}, 9.6 \%$); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3320 \mathrm{br}, 1680 \mathrm{~m}, 1470 \mathrm{~m}, 1435 \mathrm{~s}, 1325 \mathrm{~m}$ and $1225 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.16-7.90\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.74-7.38\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.1-\mathrm{OH}\right), 7.17(\mathrm{~d}, J 8.7,6-\mathrm{H}$ or $5-\mathrm{H}), 6.85(\mathrm{~d}, J 8.7,5-\mathrm{H}$ or $6-\mathrm{H}), 1.36\left(\mathrm{~s}, \mathrm{Bu}^{t} \mathrm{Me}\right)$ and $1.25(\mathrm{~s}$, $\left.\mathrm{Bu}^{t} \mathrm{Me}\right) ; m / z 334\left(\mathrm{M}^{+}, 4 \%\right)$ and 277 (100).

2-Methoxycarbonyl-3-phenylsulfonylhydroquinone.-Meth-oxycarbonyl-1,4-benzoquinone $(0.26 \mathrm{~g}, 1.56 \mathrm{mmol})$, trifluoroacetic acid $\left(0.137 \mathrm{~cm}^{3}, 1.84 \mathrm{mmol}\right)$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate ($0.30 \mathrm{~g}, 1.83 \mathrm{mmol}$) in water $\left(10 \mathrm{~cm}^{3}\right)$ gave the hydroquinone as white prisms $(0.40 \mathrm{~g}, 84 \%)$, m.p. $158.5-$ $160{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.9 ; \mathrm{H}, 3.95 ; \mathrm{S}, 10.35 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~S}$ requires: C, $54.5 ; \mathrm{H}, 3.9$; S, 10.39%; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3690 \mathrm{br}, 3300 \mathrm{br}$, $1700 \mathrm{~s}, 1460 \mathrm{~m}$ and $1345 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.81(\mathrm{br} \mathrm{s}$, removed by $\left.\mathrm{D}_{2} \mathrm{O}, 4-\mathrm{OH}\right), 8.05\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.63\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}\right.$, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and $\left.1-\mathrm{OH}\right), 7.18(\mathrm{~d}, J 10.5,6-\mathrm{H}$ or $5-\mathrm{H}), 6.91(\mathrm{~d}, J 10.5$,
$5-\mathrm{H}$ or $6-\mathrm{H})$ and $3.88(\mathrm{~s}, \mathrm{Me}) ; m / z 292\left(\mathrm{M}^{+}, 10 \%\right)$ and 276 $\left[(\mathrm{M}-\mathrm{MeOH})^{+}, 100\right]$.

2,6-Bisphenylsulfonylhydroquinone.-Phenylsulfonyl-1,4benzoquinone ($0.41 \mathrm{~g}, 1.66 \mathrm{mmol}$), trifluoroacetic acid $(0.154$ $\left.\mathrm{cm}^{3}, 2.09 \mathrm{mmol}\right)$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate $(0.34 \mathrm{~g}, 2.08 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ afforded the hydroquinone as white prisms $(0.30 \mathrm{~g}, 46 \%)$ m.p. $179-180^{\circ} \mathrm{C}$ (Found: C, 55.2; H, 3.5; S, 16.4. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C , $55.4 ; \mathrm{H}, 3.6 ; \mathrm{S}, 16.4 \%$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3220 \mathrm{br}, 3070 \mathrm{~m}$, 1450 m and $1200 \mathrm{~s} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 10.52$ (s, removed by $\left.\mathrm{D}_{2} \mathrm{O}, 1-\mathrm{OH}\right), 8.14-7.75\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.75-$ $7.47\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right.$ and $\left.4-\mathrm{OH}\right)$ and 7.38 ($\mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}$); $m / z 390\left(\mathrm{M}^{+}, 100 \%\right.$). The layers of the twophase filtrate were separated and the organic layer was washed with water, dried and the solvent removed. Recrystallisation gave 2,3-bisphenylsulfonylhydroquinone as white prisms (0.31 g, 48%), m.p. $174-175^{\circ} \mathrm{C}$.

2,3-Bisphenylsulfonylhydroquinone.-Phenylsulfonyl-1,4benzoquinone $(0.40 \mathrm{~g}, 1.60 \mathrm{mmol})$, trifluoroacetic acid (0.48 $\left.\mathrm{cm}^{3}, 6.47 \mathrm{mmol}\right)$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and sodium benzenesulfinate $(0.28 \mathrm{~g}, 1.70 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ gave the hydroquinone as white prisms $(0.48 \mathrm{~g}, 67 \%)$; m.p. $174-175.5^{\circ} \mathrm{C}$ (Found: C, 55.4; H, 3.6; S, 16.4. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C, 55.4; $\mathrm{H}, 3.6 ; \mathrm{S}, 16.4 \%$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3220 \mathrm{br}, 1450 \mathrm{~s}, 1315 \mathrm{~m}$ and $1250 \mathrm{~m} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 10.59$ (s, removed by $\mathrm{D}_{2} \mathrm{O}$, $1-\mathrm{OH}$ and $4-\mathrm{OH}), 8.11-7.46\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\right.$ $\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}\right)$ and 7.37 (s, 5-H and $\left.6-\mathrm{H}\right) ; m / z$ $390\left(\mathrm{M}^{+}, 20 \%\right)$ and 77 (100).

2,5-Dimethyl-3,6-bisphenylsulfonylhydroquinone.-2,5-Di-methyl-3-phenylsulfonyl-1,4-benzoquinone ($0.82 \mathrm{~g}, 0.66 \mathrm{mmol}$), trifluoroacetic acid $\left(0.06 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}\right)$ in dichloromethane ($10 \mathrm{~cm}^{3}$) and sodium benzenesulfinate $(0.13 \mathrm{~g}, 0.78 \mathrm{mmol})$ in water ($10 \mathrm{~cm}^{3}$) gave the hydroquinone as white prisms $(0.24 \mathrm{~g}$, 93%), m.p. $246.5-247.5^{\circ} \mathrm{C}$ (Found: C, $57.55 ; \mathrm{H}, 4.4 ; \mathrm{S}, 15.0$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 57.4 ; \mathrm{H}, 4.3 ; \mathrm{S}, 15.3 \%$); $v_{\text {max }}(\mathrm{Nu}-$ jol) $/ \mathrm{cm}^{-1} 3260 \mathrm{sh}, 3200 \mathrm{sh}, 1390 \mathrm{~m}, 1370 \mathrm{~m}$ and $1160 \mathrm{~s} ; \delta_{\mathrm{H}}[300$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.15\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 1-\mathrm{OH}\right.$ and $4-$ $\mathrm{OH}), 8.00-7.80\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$ and 2.38 ($\mathrm{s}, 2-\mathrm{Me}$ and 5-Me); $m / z 418\left(\mathrm{M}^{+}, 100 \%\right.$).

2,6-Dimethyl-3,5-bisphenylsulfonylhydroquinone.-2,6-Di-methyl-3-phenylsulfonyl-1,4-benzoquinone ($0.27 \mathrm{~g}, 1.32 \mathrm{mmol}$), trifluoroacetic acid $\left(0.121 \mathrm{~cm}^{3}, 1.63 \mathrm{mmol}\right)$ in dichloromethane ($10 \mathrm{~cm}^{3}$) and sodium benzenesulfinate $(0.27 \mathrm{~g}, 1.63 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ gave the hydroquinone as white needles $(0.47 \mathrm{~g}$, 85%), m.p. $177-178{ }^{\circ} \mathrm{C}$ (Found: C, $57.3 ; \mathrm{H}, 4.3 ; \mathrm{S}, 15.2$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C, $57.4 ; \mathrm{H}, 4.3 ; \mathrm{S}, 15.3 \%$); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3450 \mathrm{sh}, 3150 \mathrm{sh}, 1565 \mathrm{~m}, 1370 \mathrm{~m}$ and $1310 \mathrm{~m} ; \delta_{\mathrm{H}}[300 \mathrm{MHz} ;$ $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.06\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime} \cdot \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.82\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}$ and $5^{\prime \prime}-\mathrm{H}, 1-\mathrm{OH}$ and $\left.4-\mathrm{OH}\right)$ and $2.66(\mathrm{~s}, 2-\mathrm{Me}$ and 6-Me); $m / z 418\left(\mathrm{M}^{+}, 47 \%\right)$ and 278 (100).

2,3-Dimethyl-5,6-bisphenylsulfonylhydroquinone.-2,3-Di-methyl-5-phenylsulfonyl-1,4-benzoquinone ($0.34 \mathrm{~g}, 1.24 \mathrm{mmol}$), trifluoroacetic acid $\left(0.184 \mathrm{~cm}^{3}, 2.49 \mathrm{mmol}\right)$ in dichloromethane ($10 \mathrm{~cm}^{3}$) and sodium benzenesulfinate $(0.41 \mathrm{~g}, 2.49 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ gave the hydroquinone as white needles $(0.25 \mathrm{~g}$, 67%), m.p. $160-161^{\circ} \mathrm{C}$ (Found: C, $57.1 ; \mathrm{H}, 4.2 ; \mathrm{S}, 15.6$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 57.4 ; \mathrm{H}, 4.3 ; \mathrm{S}, 15.3 \%$); $v_{\max }(\mathrm{Nu}-$ jol) $/ \mathrm{cm}^{-1} 3010 \mathrm{sh}, 1675 \mathrm{~s}$ and $1330 \mathrm{~s} ; \delta_{\mathrm{H}}\left[60 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ $7.88-7.42$ (m, $2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-$ $\mathrm{H}, 6^{\prime \prime}-\mathrm{H}, 1-$ and $\left.4-\mathrm{OH}\right)$ and 1.94 (s, 2-Me and $3-\mathrm{Me}$); $m / z 418$ ($\mathrm{M}^{+}, 9 \%$) and 77 (100).

General Procedure for the Preparation of Phenylsulfonylquinones using Silver(1) Oxide.-Phenylsulfonyl-1,4-benzoquinone.

Phenylsulfonylhydroquinone (10.24 g), benzene ($150 \mathrm{~cm}^{3}$), silver(I) oxide (29.23 g) and anhydrous sodium sulfate (27.5 g) were shaken together at room temperature for 12 h . The mixture was filtered through Celite, the solvent was removed and the residue was crystallised from cyclohexane affording phenyl-sulfonyl-1,4-benzoquinone as yellow needles ($8.87 \mathrm{~g}, 87 \%$), m.p. 139-140 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{18} 139{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1665 \mathrm{~s}, 1460 \mathrm{~m}$ and $1380 \mathrm{w} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.05\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.58(\mathrm{~m}, 3-$ $\mathrm{H}, 3^{\prime} \cdot \mathrm{H}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime} \cdot \mathrm{H}\right)$ and $6.74(\mathrm{~m}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; m / z 250$ $\left.\left[(\mathrm{M}+2)^{+}, 8\right)\right], 248\left(\mathrm{M}^{+}, 5\right)$ and $77(100)$.

2,5-Dimethyl-3-phenylsulfonyl-1,4-benzoquinone. 2,5-Dimeth-yl-3-phenylsulfonylhydroquinone (0.51 g) and silver(I) oxide $(2.92 \mathrm{~g})$ gave the quinone as yellow needles ($0.34 \mathrm{~g}, 68 \%$), m.p. $145.5-147{ }^{\circ} \mathrm{C}$ (Found: C, 60.6; $\mathrm{H}, 4.3$; S, 11.4. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 60.8 ; \mathrm{H}, 4.3 ; \mathrm{S}, 11.5 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1670 \mathrm{~s}$, $1590 \mathrm{w}, 1330 \mathrm{~s}, 1290 \mathrm{~m}, 1180 \mathrm{~m}$ and $1160 \mathrm{~s} ; \delta_{\mathrm{H}}\left(220 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.08\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.80-7.50\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.72$ (s, with fine splitting, $6-\mathrm{H}$), $2.65(\mathrm{~s}, 2-\mathrm{Me}$) and $1.95(\mathrm{~d}, J 1.15$, $5-\mathrm{Me}) ; m / z 276\left(\mathrm{M}^{+}, 3 \%\right)$ and $67\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}^{+}, 100\right)$.

2,6-Dimethyl-3-phenylsulfonyl-1,4-benzoquinone. 2,6-Dimeth-yl-3-phenylsulfonylhydroquinone (0.89 g) and silver(I) oxide $(2.84 \mathrm{~g})$ afforded the quinone as yellow needles $(0.76 \mathrm{~g}, 85 \%)$, m.p. $122-123.5^{\circ} \mathrm{C}$ (Found: C, 60.7; H, 4.3; S, 11.95. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 60.8 ; \mathrm{H}, 4.3 ; \mathrm{S}, 11.6 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1695 \mathrm{w}$, $1660 \mathrm{~s}, 1520 \mathrm{~m}$ and $1355 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.26-7.76(\mathrm{~m}$, $2^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.76-7.16\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.42(\mathrm{~s}$, with fine splitting, $5-\mathrm{H}), 2.67(\mathrm{~d}, J 1.5,2-\mathrm{Me})$ and $2.02(\mathrm{~s}, 6-\mathrm{Me}) ; m / z$ $276\left(\mathrm{M}^{+}, 1 \%\right)$ and $67\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}^{+}, 100\right)$.
2,3-Dimethyl-5-phenylsulfonyl-1,4-benzoquinone. 2,3-Dimeth-yl-5-phenylsulfonylhydroquinone (0.57 g) and silver(I) oxide $(1.68 \mathrm{~g})$ gave the quinone as yellow needles $(0.45 \mathrm{~g}, 80 \%)$, m.p. $152-154^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.7 ; \mathrm{H}, 4.4 ; \mathrm{S}, 11.6 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 60.8 ; \mathrm{H}, 4.3 ; \mathrm{S}, 11.6 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1655 \mathrm{~s}$, 1165 s and $1090 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.08\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.59\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.34(\mathrm{~s}, 6-\mathrm{H})$ and $2.00(\mathrm{~s}, 2-\mathrm{Me}$ and $6-\mathrm{Me}) ; m / z 276\left(\mathrm{M}^{+}, 1 \%\right)$ and $212\left[\left(\mathrm{M}-\mathrm{SO}_{2}\right)^{+}, 100\right]$.

2,3,5-Trimethyl-6-phenylsulfonyl-1,4-benzoquinone. 2,3,5-Tri-methyl-6-phenylsulfonylhydroquinone $(0.41 \mathrm{~g})$ and silver(I$)$ oxide $(1.76 \mathrm{~g})$ gave the quinone as yellow plates $(0.28 \mathrm{~g}, 70 \%)$, m.p. 133-134 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.2; H, 4.9; S, 11.5. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 62.1 ; \mathrm{H}, 4.8 ; \mathrm{S}, 11.0 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1655 \mathrm{~s}$ and $1320 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.16-7.81\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.71-$ $7.22\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 2.65(\mathrm{~s}, 5-\mathrm{Me})$ and $1.96(\mathrm{~m}, 2-\mathrm{Me}$ and $3-\mathrm{Me}) ; m / z 292\left[(\mathrm{M}+2)^{+}, 7 \%\right], 290\left(\mathrm{M}^{+}, 2\right)$ and 67 $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}^{+}, 100\right)$.

2-Phenylsulfonyl-1,4-naphthoquinone. 2-Phenylsulfonyl-1,4naphthohydroquinone $(0.55 \mathrm{~g})$ and silver(I$)$ oxide (1.48 g) afforded the quinone as yellow-green needles $(0.28 \mathrm{~g}, 55 \%)$, m.p. $190-191^{\circ} \mathrm{C}$ (lit., ${ }^{20} 190^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1670 \mathrm{~s}, 1590 \mathrm{~m}$, 1330 m and $1170 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.21\left(\mathrm{~d}, J 7.2,2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 8.41$ (dd, $\left.J_{1} 6, J_{2} 3,5-\mathrm{H}\right), 8.09$ (dd, $\left.J_{1} 6, J_{2} 3,8-\mathrm{H}\right), 7.91$ (s, $3-\mathrm{H}), 7.85\left(\mathrm{dd}, J_{1} 6, J_{2} 3,6-\mathrm{H}\right.$ and $\left.7-\mathrm{H}\right), 7.70\left(\mathrm{t}, J 7.2,4^{\prime}-\mathrm{H}\right)$ and $7.64\left(\mathrm{t}, J 7.3,3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right) ; m / z 300\left[(\mathrm{M}+2)^{+}, 22 \%\right]$ and 234 $\left[\left(\mathrm{M}-\mathrm{SO}_{2}\right)^{+}, 100\right]$.

2-Acetyl-3-phenylsulfonyl-1,4-benzoquinone. 2-Acetyl-3-phenylsulfonylhydroquinone (0.79 g) and silver(I) oxide (2.26 g) afforded the quinone as an orange solid $(0.40 \mathrm{~g}, 62 \%)$, m.p. 142 $145^{\circ} \mathrm{C}$ which could not be purified further; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $1710 \mathrm{~m}, 1670 \mathrm{~s}, 1330 \mathrm{~m}$ and $1270 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.17-7.85$ $\left(\mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.73-7.37\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.81(\mathrm{~d}, J$ $10.7,5-\mathrm{H}$ or $6-\mathrm{H}), 6.63(\mathrm{~d}, J 10.7,6-\mathrm{H}$ or $5-\mathrm{H})$ and $2.60(\mathrm{~s}, \mathrm{Me})$; $m / z 290\left(\mathrm{M}^{+}, 26 \%\right)$ and 43 (100).

2-Benzoyl-3-phenylsulfonyl-1,4-benzoquinone. 2-Benzoyl-3phenylsulfonylhydroquinone (0.67 g) and silver(I) oxide $(2.26$ g) afforded the quinone as an orange solid ($0.51 \mathrm{~g}, 77 \%$), m.p. $163.5-167^{\circ} \mathrm{C}$, which could not be purified further; $v_{\max }{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1685 \mathrm{~m}, 1670 \mathrm{~s}, 1450 \mathrm{~m}, 1335 \mathrm{~m}$ and $1270 \mathrm{~m} ; \delta_{\mathrm{H}}[60$ MHz ; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.36-7.81\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right)$,
7.81-7.40 (m, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.01(\mathrm{~d}, J$ $9.3,5-\mathrm{H}$ or $6-\mathrm{H})$ and $6.63(\mathrm{~d}, J 9.3,6-\mathrm{H}$ or $5-\mathrm{H}) ; m / z 352\left(\mathrm{M}^{+}\right.$, 2%) and 105 (100).

3-Phenylsulfonyl-2-pivaloyl-1,4-benzoquinone. 3-Phenylsulf-onyl-2-pivaloylhydroquinone (0.22 g) and silver(I) oxide (1.18 g) afforded the quinone as an orange solid $(0.17 \mathrm{~g}, 77 \%)$, m.p. $47.5-$ $59^{\circ} \mathrm{C}$, which could not be purified further; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $1700 \mathrm{~m}, 1670 \mathrm{~s}, 1330 \mathrm{~m}$ and $1270 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.25-7.91$ $\left(\mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.91-7.77\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.90(\mathrm{~d}, J$ $10.7,5-\mathrm{H}$ or $6-\mathrm{H}), 6.69(\mathrm{~d}, J 10.7,6-\mathrm{H}$ or $5-\mathrm{H})$ and $1.37\left(\mathrm{~s}, \mathrm{Bu}^{t}\right.$, $\mathrm{Me}) ; m / z 332\left(\mathrm{M}^{+}, 26 \%\right)$ and 43 (100).

2-Methoxycarbonyl-3-phenylsulfonyl-1,4-benzoquinone. 2-Methoxycarbonyl-3-phenylsulfonylhydroquinone (0.23 g) and silver(I) oxide (2.65 g) afforded the quinone as yellow needles ($0.15 \mathrm{~g}, 64 \%$), m.p. $144.5-146^{\circ} \mathrm{C}$ (Found: M^{+}, 306.0195. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 306.0198$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1780 \mathrm{~s}$, $1670 \mathrm{~s}, 1340 \mathrm{~m}, 1305 \mathrm{~m}$ and $1280 \mathrm{~m} ; \delta_{\mathrm{H}}\left(220 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.15(\mathrm{~m}$, $2^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.64\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 6.89(\mathrm{~d}, J 10,5-\mathrm{H}$ or $6-\mathrm{H}), 6.77(\mathrm{~d}, J 10,6-\mathrm{H}$ or $5-\mathrm{H})$ and $4.07(\mathrm{~s}, \mathrm{Me}) ; m / z 306\left(\mathrm{M}^{+}\right.$, 28%) and 182 (100).

General Procedure for the Preparation of Phenylsulfonylbenzoquinones using Phenyliodine(III) Bistrifluoroacetate.-2,6-Bisphenylsulfonyl-1,4-benzoquinone. Phenyliodine(III) bistrifluoroacetate $(0.14 \mathrm{~g}, 0.33 \mathrm{mmol})$ was added over 10 min to a solution of 2,6 -bisphenylsulfonylhydroquinone $(0.13 \mathrm{~g}, 0.32$ mmol) in dichloromethane ($30 \mathrm{~cm}^{3}$) and the mixture was then stirred for 60 min . The solvent was removed and the solid was washed with light petroleum (b.p. $80-100^{\circ} \mathrm{C}$) and pumped at 0.05 mmHg until constant weight was obtained. Recrystallisation from benzene gave the quinone as orange prisms $(0.10 \mathrm{~g}$, 78%), m.p. $238-239^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 55.8 ; \mathrm{H}, 3.0 ; \mathrm{S}, 16.6$. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C, $57.7 ; \mathrm{H}, 3.1 ; \mathrm{S}, 16.5 \%$); $v_{\max } \mathrm{CH}_{2} \mathrm{Cl}_{2}$)/ $\mathrm{cm}^{-1} 1675 \mathrm{~m}, 1665 \mathrm{~m}, 1335 \mathrm{~m}$ and $1275 \mathrm{~m} ; \delta_{\mathrm{H}}[300 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.17-7.85\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right)$ and 7.85$7.46\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $5^{\prime \prime}-\mathrm{H}, 3-\mathrm{H}$ and $\left.5-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(20.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2} 184.7(\mathrm{C}-1), 175.8(\mathrm{C}-4), 146.3(\mathrm{C}-2\right.$ and $\mathrm{C}-3), 137.9$ (C-3, C-5, C-1' and $\left.\mathrm{C}-1^{\prime \prime}\right), 135.5$ (C-4' and C-4") and 129.9 (C-2', C-3', C-5', C-6', C-2", C-5" and C-6"); m/z 388 (${ }^{+}$, $2 \%)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 100\right)$.

2,3-Bisphenylsulfonyl-1,4-benzoquinone. 2,3-Bisphenylsulfonylhydroquinone ($0.16 \mathrm{~g}, 0.41 \mathrm{mmol}$) and phenyliodine(III) bistrifluoroacetate $(0.18 \mathrm{~g}, 0.41 \mathrm{mmol})$ gave the quinone as orange prisms $\left(0.13 \mathrm{~g}, 79 \%\right.$), m.p. $146-148{ }^{\circ} \mathrm{C}$ (Found: C, $55.4 ; \mathrm{H}, 3.2 ; \mathrm{S}$, 16.6. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 57.7 ; \mathrm{H}, 3.1 ; \mathrm{S}, 16.5 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1670 \mathrm{~s}, 1450 \mathrm{~m}, 1335 \mathrm{~s}$ and $1170 \mathrm{~s} ; \delta_{\mathrm{H}}[300 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 8.57-8.22\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 8.02(\mathrm{~m}$, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$ and $6.94(\mathrm{~s}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(20.1 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 182.6(\mathrm{C}-1$ and $\mathrm{C}-4), 149.4(\mathrm{C}-2$ and $\mathrm{C}-3$), 140.2 ($\mathrm{C}-1^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$), 136.7 (C-5 and C-6 or C-4' and $\left.\mathrm{C}-4^{\prime \prime}\right), 135.1$ (C-4' and C-4' or C-5 and C-6), 130.5 (C-2', C-6', C-2" and C-6") and 129.3 (C-3', C-5', C-3" and C-5"); m/z 388 ($\mathrm{M}^{+}, 10 \%$) and 77 (100).

2,5-Dimethyl-3,6-bisphenylsulfonyl-1,4-benzoquinone. 2,5-Di-methyl-3,6-bisphenylsulfonylhydroquinone ($0.19 \mathrm{~g}, 0.45 \mathrm{mmol}$) and phenyliodine(III) bistrifluoroacetate ($0.20 \mathrm{~g}, 0.45 \mathrm{mmol}$) gave the quinone as yellow needles ($0.17 \mathrm{~g}, 86 \%$), m.p. 229 $230^{\circ} \mathrm{C}$ (Found: C, $57.85 ; \mathrm{H}, 3.9 ; \mathrm{S}, 15.1 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C, $57.7 ; \mathrm{H}, 3.8 ; \mathrm{S}, 15.4 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1674 \mathrm{~s}, 1600 \mathrm{w}$, $1460 \mathrm{~s}, 1325 \mathrm{~s}$ and $1240 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.14\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\right.$ $\mathrm{H}, 2^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.84-7.56\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$ and $2.64(\mathrm{~s}, 2-\mathrm{Me}$ and $5-\mathrm{Me}) ; m / z 418\left[(\mathrm{M}+2)^{+}\right.$, $95 \%], 416\left(\mathrm{M}^{+}, 2 \%\right)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}, 100\right)$.

2,6-Dimethyl-3,5-bisphenylsulfonyl-1,4-benzoquinone. 2,6-Di-methyl-3,5-bisphenylsulfonylhydroquinone $(0.25 \mathrm{~g}, 0.59 \mathrm{mmol})$ and phenyliodine(III) bistrifluoroacetate ($0.28 \mathrm{~g}, 0.64 \mathrm{mmol}$) gave the quinone as yellow needles $(0.20 \mathrm{~g}, 81 \%)$, m.p. $230-231^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 57.7 ; \mathrm{H}, 3.9 ; \mathrm{S}, 15.6 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 57.7 ; \mathrm{H}$,
3.8; $\mathrm{S}, 15.4 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1680 \mathrm{w}, 1655 \mathrm{~m}, 1460 \mathrm{~s}, 1375 \mathrm{~s}$ and $1320 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.02\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.62\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$ and 2.68 (s, 2-Me and 6-Me); $m / z 418\left[(\mathrm{M}+2)^{+}, 58 \%\right], 416\left(\mathrm{M}^{+}, 1\right)$ and 77 (100).

2,3-Dimethyl-5,6-bisphenylsulfonyl-1,4-benzoquinone. 2,3-Di-methyl-5,6-bisphenylsulfonylhydroquinone ($0.19 \mathrm{~g}, 0.45 \mathrm{mmol}$) and phenyliodine(III) bistrifluoroacetate $(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ gave the quinone as yellow needles $(0.16 \mathrm{~g}, 84 \%)$, m.p. 249.5$251{ }^{\circ} \mathrm{C}$ (Found: C, 57.1; H, 4.4; S, 15.0.* $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: C, $57.7 ; \mathrm{H}, 3.8 ; \mathrm{S}, 15.4 \%$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3000 \mathrm{w}, 1675 \mathrm{~s}$, $1375 \mathrm{~s}, 1330 \mathrm{~s}$ and $1220 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.23-7.79\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$, $6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.79-7.26\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$ and $1.99(\mathrm{~s}, 2-\mathrm{Me}$ and $3-\mathrm{Me}) ; m / z 418\left[(\mathrm{M}+2)^{+}\right.$, 1%] and 212 (100).

Diels-Alder Adducts

4a,5,8,8a-Tetrahydro-4a-phenylsulfonyl-5,8-methano-1,4naphthoquinone $11(\mathrm{R}=\mathrm{H})$.-A solution of phenylsulfonyl-1,4-benzoquinone $(0.59 \mathrm{~g}, 2.37 \mathrm{mmol})$ and cyclopentadiene (0.2 $\mathrm{cm}^{3}, 2.43 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) was allowed to stand at room temperature for 2 h . Removal of the solvent followed by crystallisation from cyclohexane gave the DielsAlder adduct as yellow needles ($0.72 \mathrm{~g}, 97 \%$), m.p. $114.5-116^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.8 ; \mathrm{H}, 4.5 ; \mathrm{S}, 10.0 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 65.0 ; \mathrm{H}$, $4.5 ; \mathrm{S}, 10.2 \%) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 1680 \mathrm{~s}, 1310 \mathrm{~m}, 1205 \mathrm{~m}$ and $1150 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.67\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 6.50(\mathrm{~s}, 2-\mathrm{H}$ and $3-\mathrm{H}), 6.18(\mathrm{~m}, 6-\mathrm{H}), 5.96(\mathrm{~m}, 7-\mathrm{H})$, 4.11 (d, J 4, 8a-H), $3.66(\mathrm{~m}, 8-\mathrm{H}), 3.47(\mathrm{~m}, 5-\mathrm{H}), 2.39(\mathrm{dm}, J 9.3$, 9-H anti) and $1.50\left(\mathrm{dm}, J 9.3,9-\mathrm{H}\right.$ syn); $m / z 314\left(\mathrm{M}^{+}, 2 \%\right)$ and $51\left(\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}, 100\right)$.

4a,5,8,8a-Tetrahydro-4a-phenylsulfonyl-1,4-naphthoquinone $12(\mathrm{R}=\mathrm{H})$.-Butadiene gas was bubbled into a solution of phenylsulfonyl-1,4-benzoquinone $(0.30 \mathrm{~g}, 1.21 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 3 min . The solution was warmed to room temperature and allowed to stand for 2 h . Removal of the solvent followed by crystallisation from cyclohexane gave the Diels-Alder adduct as yellow-green needles $\left(0.29 \mathrm{~g}, 80 \%\right.$), m.p. $120-121.5^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.5 ; \mathrm{H}, 4.8$; $\mathrm{S}, 10.65 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 63.6 ; \mathrm{H}, 4.6 ; \mathrm{S}, 10.6 \%$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 1685 \mathrm{~s}, 1605 \mathrm{~m}, 1450 \mathrm{~m}, 1315 \mathrm{~s}$ and $1200 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.73$ (m, 2' $-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 6.79(\mathrm{~s}, 2-\mathrm{H}$ and $3-\mathrm{H}), 5.71(\mathrm{~m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 3.57\left(\mathrm{dd}, J_{1}\right.$ $\left.10.5, J_{2} 8,8 \mathrm{a}-\mathrm{H}\right)$ and $3.15-1.94(\mathrm{~m}, 5 \alpha-\mathrm{H}, 5 \beta-\mathrm{H}, 8 \alpha-\mathrm{H}$ and $8 \beta-\mathrm{H})$; $m / z 302\left(\mathrm{M}^{+}, 26 \%\right)$ and $77(100)$.

4a,5,8,8a-Tetrahydro-5-methyl-4a-phenylsulfonyl-1,4-naphthoquinone $12(\mathrm{R}=\mathrm{Me})$.- A mixture of phenylsulfonyl-1,4benzoquinone ($0.62 \mathrm{~g}, 2.48 \mathrm{mmol}$) and (E)-penta-1,3-diene $(0.25$ $\left.\mathrm{cm}^{3}, 2.51 \mathrm{mmol}\right)$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was allowed to stand at room temperature for 2 h . Removal of the solvent followed by crystallisation from cyclohexane gave the DielsAlder adduct as yellow needles ($0.75 \mathrm{~g}, 95 \%$), m.p. $91-92^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.5 ; \mathrm{H}, 5.1 ; \mathrm{S}, 10.2 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 64.55$; $\mathrm{H}, 5.1 ; \mathrm{S}, 10.1 \%$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3070 \mathrm{w}, 1705 \mathrm{~s}, 1610 \mathrm{~m}$, 1450 m and $1310 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.91\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.63\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.91(\mathrm{~d}, J 10.5,2-\mathrm{H}$ or $3-\mathrm{H}), 6.70$ (d, $J 10.5,3-\mathrm{H}$ or $2-\mathrm{H}), 5.62(\mathrm{~m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 3.74\left(\mathrm{dd}, J_{1} 9.3, J_{2}\right.$ $7,8 \mathrm{a}-\mathrm{H}), 2.71(\mathrm{~m}, 5-\mathrm{H}, 8 \alpha-\mathrm{H}$ and $8 \beta-\mathrm{H})$ and $0.99(\mathrm{~d}, J 5,5-\mathrm{Me}) ;$ $m / z 316\left(\mathrm{M}^{+}, 17 \%\right)$ and $77(100)$.

4a,5,8,8a-Tetrahydro-2,3-bisphenylsulfonyl-5,8-methano-1,4naphthoquinone 13.-A mixture of 2,3-bisphenylsulfonyl-1,4-

[^2]benzoquinone ($0.16 \mathrm{~g}, 0.42 \mathrm{mmol}$) and cyclopentadiene (0.035 $\left.\mathrm{cm}^{3}, 0.42 \mathrm{mmol}\right)$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was allowed to stand at room temperature for 1 h . Removal of the solvent followed by crystallisation from cyclohexane to give the DielsAlder adduct as yellow needles $\left(0.11 \mathrm{~g}, 60 \%\right.$), m.p. $155-159^{\circ} \mathrm{C}$ (Found: C, 55.7; H, 4.0; S, 14.5.* $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 60.8$; $\mathrm{H}, 4.0 ; \mathrm{S}, 14.1 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1695 \mathrm{~m}, 1665 \mathrm{~m}, 1470 \mathrm{~s}$, $1440 \mathrm{~s}, 1340 \mathrm{~m}$ and $1305 \mathrm{~s} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.30-7.98\left(\mathrm{~m}, 2^{\prime}-\right.$ $\mathrm{H}, 6^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.76-7.36\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$, $4^{\prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 6.07(\mathrm{~m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{a}-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H})$ and $1.48\left(\mathrm{~m}, 9-\mathrm{H}\right.$ syn and $9-\mathrm{H}$ anti); $m / z 454\left(\mathrm{M}^{+}, 1\right)$ and $51\left(\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}, 100 \%\right)$.

5,8-Dihydro-2-phenylsulfonylnaphthalene-1,4-diol.-A solution of 4a,5,8,8a-tetrahydro-4a-phenylsulfonyl-1,4-naphthoquinone $(0.41 \mathrm{~g}, 1.34 \mathrm{mmol})$ in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ was allowed to stand at room temperature for 20 minutes. Removal of the solvent and crystallisation gave the hydroquinone as white prisms $\left(0.37 \mathrm{~g}, 92 \%\right.$), m.p. $188.5-189.5^{\circ} \mathrm{C}$ (Found: C, $63.8 ; \mathrm{H}$, 4.7; $\mathrm{S}, 11.0 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 63.6 ; \mathrm{H}, 4.6 ; \mathrm{S}, 10.6 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3470 \mathrm{sh}, 3330 \mathrm{sh}, 1460 \mathrm{~s}$ and $1380 \mathrm{~m} ; \delta_{\mathrm{H}}[60$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 7.99\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.63\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $5^{\prime}-\mathrm{H}, 1-\mathrm{OH}$ and $\left.4-\mathrm{OH}\right), 7.08(\mathrm{~s}, 3-\mathrm{H}), 5.83(6-\mathrm{H}$ and $7-\mathrm{H})$ and $3.24(\mathrm{~s}, 5 \alpha-\mathrm{H}, 5 \beta-\mathrm{H}, 8 \alpha-\mathrm{H}$ and $8 \beta-\mathrm{H}) ; m / z 302\left(\mathrm{M}^{+}, 94 \%\right)$ and $161\left[\left(\mathrm{M}-\mathrm{SO}_{2} \mathrm{Ph}\right)^{+}, 100\right]$.

Cyclic Voltammetry.-Measurements were made at ambient temperature over the range +1 V to -2 V using a Princeton Appiied Research model 173 potentiostat for solutions of the quinones in dimethylformamide (Baker Chemical Co., analytical grade dried over $4 \AA$ molecular sieves) containing tetra-
 Chemical Co., crystallised from $4: 1$ water-methanol and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$) as the supporting electrolyte, using a $28 \mathrm{~mm}^{2}$ area glassy carbon electrode with platinum counter electrode and a saturated calomel reference electrode. Reproducibility was ± 20 mV for $\mathrm{Q} / \mathrm{Q}^{--}$and $\pm 40 \mathrm{mV}$ for $\mathrm{Q}^{--} / \mathrm{Q}^{2-}$. Under these conditions ferrocene had a first half-wave reduction potential of +524 mV .

Acknowledgements

We thank Prof. P. L. Dutton and Dr. R. C. Prince for the cyclic voltammetry.

References

1 Part 5. R. Al-Hamdany, J. M. Bruce, F. Heatley and J. Khalafy, J. Chem. Soc., Perkin Trans. 2, 1985, 1395.

2 O. Hinsberg, Ber., 1894, 27, 3259.
3 M. D. Rozeboom, I. M. Tegmo-Larsson and K. N. Houk, J. Org. Chem., 1981, 46, 2338.
4 Cf. O. Hammerich and V. D. Parker, Acta Chem. Scand., Ser. B, 1982, 36, 63.
5 J. Das, R. Kubela, G. A. MacAlpine, Z. Stojanac and Z. Valenta, Can. J. Chem., 1979, 57, 3308.

6 J. S. Tou and W. Rensch, J. Org. Chem., 1980, 45, 5012.
7 J. M. Bruce, in Rodd's Chemistry of Carbon Compounds, 2nd edn., ed. S. Coffey, Elsevier, Amsterdam, 1974, vol. IIIB, ch. 8.

8 J. M. Bruce, in Supplement to the Second Edition of Rodd's Chemistry of Carbon Compounds, ed. M. F. Ansell, Elsevier, Amsterdam, 1981, vol. IIIB, ch. 8.
9 K. Wallenfels, G. Bachman, D. Hoffman and R. Kern, Tetrahedron, 1965, 21, 2239.
10 R. C. Atkinson, P. B. D. de la Mare and D. S. Larsen, J. Chem. Soc., Perkin Trans. 2, 1954, 1428.
11 R. H. Thomson, Quart. Reviews, 1956, 10, 27.
12 A. Nishinaga, T. Itahara, T. Matsuura, S. Berger, G. Henes and A. Rieker, Chem. Ber., 1976, 109, 1530.

13 H. Uno, J. Org. Chem., 1986, 51, 350.
14 M. S. Pearson, B. J. Jensky, F. X. Greer, J. P. Hagstrom and N. M. Wells, J. Org. Chem., 1978, 43, 4617.
15 D. B. Bruce and R. H. Thomson, J. Chem. Soc., 1954, 1428.
16 R. M. Scribner, J. Org. Chem., 1966, 31, 3671.
17 Cf. R. N. Warrener, D. A. C. Evans and R. A. Russell, Tetrahedron Lett., 1984, 25, 4833.
19 E. R. Brown, K. T. Finley and R. L. Reeves, J. Org. Chem., 1971, 36, 2849.

20 O. Hinsberg, Ber., 1917, 50, 953.
21 J. M. Bruce, F. Heatley, R. G. Ryles and J. M. Scrivens, J. Chem. Soc., Perkin Trans. 2, 1980, 860.
22 J. M. Bruce, P. L. Dutton and R. C. Prince, unpublished work.

Paper 2/03373I
Received 26th June 1992 Accepted 5th August 1992

[^0]: * The products were racemic; only one enantiomer is shown

[^1]: * The products were racemic; only one enantiomer is shown.

[^2]: * Best set of data from multiple analyses.

